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Abstract

A smart grid is a modernized electrical grid that introduces a two-way communica-

tion where electricity and information can be exchanged between the utility company

and micro-grids. Small scale generators constitute renewable energy resources includ-

ing photovoltaic (PV), wind turbine, and fuel cell which are usually used to maintain

the loads in a micro-grid. But intermittency of the generators caused by the unstable

weather conditions reduced power quality, which can be improved by energy storage

systems. Further, we can ease the stress of the utility company and reduce electricity

cost by appropriately using energy storage systems (ESS) during peak electricity usage.

Nevertheless, the use of ESS in micro-grids has introduced challenges of it own such as

the prediction of electricity usage/generation, scheduling and control, battery lifetime,

etc.

To address the ESS issues in this Thesis, we propose a Model-Predictive Control

(MPC)-based scheduling method for ESS in a micro-grid. By using a high accuracy load

prediction model, we can effectively charge/discharge when and what amount of energy

as required. Through a time window-based optimization, the proposed MPC-based

scheduling for ESS increases cost reduction of electricity in a micro-grid by taking

amount of prediction power required by loads, amount of prediction power supplied by

generators, charge/discharge operations for ESS, and dynamic electricity price declared

by the utility company into consideration. Further, we present the trade off between

cost reduction of electricity and lifetime of ESS. A multi-agent system is used to model

a micro-grid. A micro-grid intelligent agent (MIA) can participate in the electricity

bidding market which works via an auction mechanism.

Experiments show that the MPC-based scheduling method for ESS gives the highest

cost reduction of 3.4% compared to other ESS strategies. Through bidding market, we

can achieve an average cost saving of 35.25% with the first-price sealed auction and

34.86% with the second-price sealed auction.



Keywords: Smart Grid, Model-Predictive Control, Energy Storage System Schedul-

ing, Auction, Cost Reduction
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Chapter 1

Introduction

A smart grid is a modernized electrical grid that brings utility electrical delivery

systems into the 21st century. It is a developing network of communications, controls,

computers, automation and new technologies working together [3]. Also, the Smart

Grid introduces a two way dialogue where electricity and information can be exchanged

between the utility and its customers.

The Smart Grid is expected to exhibit the following important features:

• Reliability: Smart Grid will use some technologies to improve fault detection and

allow self-healing of the network without the intervention of technicians. This

will ensure more reliable supply of electricity, and reduce losses against natural

disasters or power disturbance events.

• Market-enabling: Smart grid allows for systematic communication between sup-

pliers and consumers. The suppliers will declare energy prices to consumers,

while the consumers will be able to be more strategic in when they use energy.

This is called demand response.

• Security: Smart Grid is designed to allow real-time contact between utilities and

meters in customers’ homes and businesses, there is a risk that these capabilities

could be exploited for cyber-attack or even terrorist actions. Thus, measures are

usually taken to ensure security in smart grids.

• Smart power generation: It is a concept of matching electricity production with

demand using multiple identical generators and storages, each of which can start,
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stop and operate efficiently at chosen load, independently of the others, thus mak-

ing them suitable for base load and peak power generation.

• Platform for advanced services: With the development of technology and vari-

ous requirement of consumers, smart grid is expected to support new products,

services and markets.

• Efficiency: All of the assets in smart grid should be optimized and operate effi-

ciently.

The framework of traditional power grid is as shown in in Figure 1.1. The power

grid was designed for utilities to deliver electricity to consumers and then bill them

once a month or once every two months. This limited one-way interaction makes it

difficult for the grid to respond to the ever-changing and rising energy demands of the

21st century.

Power Transformers

Transmission Substation

Distribution

Residential

Consumers

Industrial Business

Consumers

Figure 1.1: The traditional power grid
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The framework of smart grid is as shown in Figure 1.2. Because the Smart Grid can

provide two-way communication, many things can be easily realized, for example, the

usage of electrical devices can be easily monitored by consumers.

The Smart Grid has many more benefits than the traditional power grid for our

daily life, however its design still needs to be improved. There are still some problems

existed in the Smart Grid, such as the high cost on electricity bill for consumers, CO2

pollution due to the high request for power generation of electricity company, and the

single power generation source and fixed electricity price for user. Thus, we focus on

the following issues in this Thesis:

• To make the Smart Grid more cost-effective.

• To reduce the CO2 pollution.

• To provide more information and automatic tools to the consumers to control the

costs or the ways they use the electricity.

Distribution 

Control

Industrial

micro-grid

Residential

micro-grid

Commercial

micro-grid

Other

micro-grid

Figure 1.2: The Smart Grid
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1.1 Background

1.1.1 Architecture of Smart Grid

A Smart Grid is made up of central generation, many micro-grids, and the distribu-

tion grid for electricity which links the above components. Figure 1.3 shows a general

architecture of the Smart Grid. Consisting of a centralized generation, a distributed

grid, and micro-grids. The central generation is the main supplies of electricity and the

can support the demand of most loads in the micro-grids. Example of central genera-

tion is a nuclear power plant and thermal power plant. The grid on network electricity

distribution allows bidirectional power flow between micro-grids.

A micro-grid is made up of some distributed energy resources (DER) such as micro-

turbines, and renewable resources power, loads, and energy storage system (ESS). The

concept of micro-grids was proposed by Lasseter- [4]. Micro-grids could be in grid-

connected mode or in islanded mode. In the grid-connected mode, a single micro-grid

can exchange electricity to other micro-grids or the central generation according to dif-

ferent situations of load balancing. In the islanded mode, the electricity supply from

other micro-grids or the central generation is disabled. A micro-grid enters islanded

mode either intentionally or unintentionally. Intentional islanding is due to unstable

conditions outside the micro-grid such as high demands from some external power

loads. Unintentional islanding occurs when there is some unexpected problem in the

distribution grid of the smart grid leading to isolation of one or more micro-grids in

islanded mode. There are some general issues in islanded mode:

• It is required to manage Critical/Non-critical1 loads to available generation.

• It is required to optimize island operation for longevity.

1.1.2 Energy Storage System

Most natural resources will be consumed very soon if we do not change the way we

use them [5][6]. Therefore, we look forward to renewable resources such as solar power

generation, wind power generation, and hydroelectric power generation, which will not

1Critical loads represents the devices that cannot be shut down or be could damage the important data

or harmful to human being, in the contract, Non-critical loads can be arbitrarily cut off.
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Figure 1.3: The Smart Grid model

only reduce energy consumption of fuel, with decrease in the emission of CO2 but will

also save the world at the same time. However there is a problem of intermittency

introduced by renewable energy resources. For example, the solar power generation

may not work regularly through sunrise and sunset, such as on a cloudy day or a rainy

day, when the production of electricity could be very unstable. As for wind power

generation and hydroelectric power generation, the lack of wind and water will directly

affect the production of electricity. As a solution, energy storage systems can be used

to enhance power quality and improve controllability of power flow. Further, with the

development of technology, more and more people are willing to set up some local

small-scale renewable energy generation equipment that can ease the stress of electricity

generation by utility company. Unexpected black-outs could thus be prevented and

sustainable power generation can be guaranteed on a larger scale. But the ESS has some

potential constraints such as over-charge or over-discharge for ESS will shorten the

lifetime2 itself, the high cost on updating new ESS equipments, and the lower electricity

generation capacity cannot maintain the request for residential area, commercial area,

and industrial area.

2Lifetime of ESS represents the number of charge/discharge cycles before the ESS fails.
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Figure 1.4 and 1.5 respectively show how load balancing is performed without and

with the energy storage systems. The demand load is fulfilled by the distributed energy

resources (DER) in the micro-grid and utility company (Grid) outside the micro-grid

without th ESS, in the contract, the power supply from utility company can be reduced

with the using of ESS. When ESS is present in a smart grid, there are other issues such

as how to increase the lifetime of battery and in a meantime increase the benefit of

electricity bill. As a result, We have to schedule an energy storage system according to

above issues.

DER

Grid

Demand  load Generation power

P
o

w
e

r 
(k

W
h

)

Figure 1.4: Without energy storage system.
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Figure 1.5: With energy storage system.

1.1.3 Prediction model

In order to effectively use ESS, the batteries need to be charged and discharged at

appropriate time points such that excess energy is stored and stored energy is consumed

at most beneficial period of time by appropriately chosen power loads. However, for

such scheduling of battery charge/discharge to be effective, we need to predict when

there is excess energy and when and what amount of energy required. Thus, prediction

models are required for both generation (excess energy) and loads (energy demands).

A general prediction model can be constructed from historical data, including power

generation data and power load data. Accuracy of prediction models is very important

for effective scheduling of batteries because an inaccurate prediction could result in

wrong scheduling decisions, consulting in excess energy wanted (all batteries are fully

changed ) or energy demands cannot be met (not enough energy stored in batteries).

1.1.4 Example

Let us look at an example [7], where we have historical data for one day. The micro-

grid, including load demands, battery source, wind energy and distributed generators.
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As shown in Figure 1.6, during 8th hour to the 20th hour of the day, demand loads are

higher than the rest of the day. In other words, during this peak demand time slot, the

price of electricity from the utility company would be higher. In such a period of high

price, not only is the stress of generators increased, but the bills of consumers are also

quite high. However, if we can schedule the energy storage system for each micro-grid

in advance, the smart grid could be more cost-saving and energy-efficient.

�5 �J�N �F���	�I�P�V�S�


Figure 1.6: Power output of microgrid

1.2 Motivation

We will explain the motivation of this Thesis in this section. In order to reduce

the cost on electricity bill with the use of ESS in the micro-grid, we have two goals

as follows. The first goal is to propose a scheduling algorithm for the energy storage

system in micro-grids, such that the demands for electricity and the electricity price

from micro-grids can be considered, while a trade-off between the battery lifetimes and

cost-saving for consumers is achieved. The second goal is to prepare suitable genera-

tion/load prediction methods and battery model to support the first goal. Case studies

will be presented to illustrate how these two goals are achieved.
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1.3 Thesis Organization

The rest of the Thesis is organized as follows. In Chapter 2, we introduce the related

work on smart grid model, battery model, prediction method, and scheduling algorithm

for batteries. In Chapter 3, we give some definitions used in our proposed models

and algorithm, and then define some assumptions. Chapter 4 is the core of our The-

sis, in which we describe the overall smart grid model and the details of the proposed

scheduling algorithms and prediction method. In Chapter 5, we analyze the experimen-

tal results and present some case studies. In Chapter 6, we conclude the Thesis and give

some future work.
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Chapter 2

Related Work

In this chapter, we review some existing approaches for smart grid designs based on

multi-agent systems (MAS), energy storage system optimization with load prediction

methods, and energy storage scheduling.

2.1 Multi-agent system modeling with energy storage

system of smart gird

Managing distributed resources in a smart grid with multiple micro-grids requires

reliable and intelligent energy-management tools [8]. Smart grids are often modeled as

a multi-agent system as an evidenced by numerous literature [1] [9] [2] [10] [11]. In

MAS, each agent can manage the behaviours of individual unit mostly autonomously

in a cooperative environment and the controls of various agents can implement asyn-

chronously and in parallel.

A popular multi-agent system to the platform called Java Agent DEvelopment frame-

work (JADE) [12] is often used to implement MAS design. JADE conforms to the

IEEE’s standard on Foundation for Intelligent Physical Agents (FIPA) [13], which helps

to ensure interoperability among different systems and platforms that constitute a MAS

design.

When a smart grid is modeled using multi-agent system [1] [9] [2], some common

agents are as described in the following.

• Smart Grid Agent (SGA): A smart grid agent collects the power demand and sup-
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ply information from micro-grid agents and automatically distributes electricity

in the following way in order to secure loads.

– Among two or more micro-grid agents

– Micro-grid agent to utility agent

• Micro-Grid Agent (MGA): A micro-grid agent has some load agents (LA), gen-

eration agents (GA), and storage agents (SA). The responsibility of MGA is to

aggregate inner load balance status periodically, then report to SGA. Two possi-

ble conditions could occur in each period.

– Buy electricity: Amount of power required by loads is greater than the

amount of power generated .

– Sell electricity: Amount of power required by loads is less than the amount

of power generated.

• Load Agent (LA): A load agent represents the electricity demand. In general,

loads can be classified into residential area users, commercial area users and in-

dustrial area users.

• Generation Agent (GA): A generation agent represents a power generation equip-

ment such as diesel generator, photovoltaic generation, wind turbine, and fuel

cell.

• Storage Agent (SA): A storage agent represents a battery bank. A SA could

represent a power load when the battery is charging and a power generator when

the battery is discharging.

• Utility Agent (UA): A utility agent represents a massive generation unit. It is as-

sumed that the UA can support most loads from all micro-grids. Moreover, UA

declares time-of-use rate or hourly price of electricity price to the SGA periodi-

cally.

In [1], authors point out that the issue of supply-demand mismatch exists if gen-

eration sources are not enough to satisfy the load demand inside a micro-grid, and

thus an agent-based energy-management system was proposed. The combination of

11



distributed resources and distributed storage brings more reliability into such systems.

The proposed architecture is shown in Figure 2.1, which consist of 5 different agents as

described in the following.

Figure 2.1: Agent architecture with two micro-grids in a smart grid [1].
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• Global Intelligent Agent (GIA): GIA is similar to SGA, the GIA coordinates stor-

age cluster agent (SCA), demand response agent (DRA), and micro-grid intelli-

gent agent (MIA) to conduct global auction.

• Storage Cluster Agent (SCA): SCA participates in the global market on behalf of

SAs.

• Demand Response Agent (DRA): DRA creates a bilateral negotiation with GAs.

• Micro-grid Intelligent Agent (MIA): MIA is similar to MGA, also MIA is re-

sponsible for conducting auction among local agents and updating the priorities

of loads.

• Load (L) and Generation (G) agent: The load and generation agents collect their

owner power information and inform MIA.

• Storage Agent (SA): The SAs represent the storage systems in a micro-grid.

These agents are responsible for maintaining the storage system such that the

state-of-charge is within the range (SoCMax, SoCMin), where SoCMax repre-

sents the upper bound SoC for ESS and SoCMin represents the lower bound SoC

for ESS.

The auction for power-exchange is performed in intervals of 5, 15, 30 and 60 min-

utes. For example, if a 15 minute interval is considered for auction a day would be

divided into 96 intervals (or block). In each interval, the initial 5 minutes is considered

an auction period, as shown in Figure 2.2. The result of this auction is then implemented

in the next interval.

13



Discussion 

interval

Commitment 

interval

5-min auction 5-min auction

15-min 15-min

Figure 2.2: 15 minute auction flow.

Dou and Liu [2] proposed a multi-agent based hierarchical hybrid control architec-

ture as shown in Figure 2.3. This architecture consists of three-level agents as described

in the following.

• The upper level energy management agent: This agent is similar to SGA. The

upper level agent is responsible for energy management strategy with multi-

objective optimization (MOO) targeted at minimizing cost, pollution emission,

and network loss. Tasks for generating electricity are then assigned to the unit

agents of distributed energy resources through the midde level agent.

• The middle level coordinated control agent: The voltage in a micro-grid must

be maintained by all distributed energy resources. Since a micro-grid system

usually runs under different conditions to meet the changes in load demands, the

suitable switch operation should be done so as to adapt to the different changes

and maintain the micro-grid voltage level within a safety range.

• The lower level unit control agent: This agent works individually for micro-

source, energy storage, renewable energy resources and load demand and ensures

the control commands from the upper level are realized appropriately.

14



Figure 2.3: Grid-connected system with two microgrids [2].

15



2.2 Energy storage system optimization

For energy management in ESS, some common objectives are as follows:

• Improvement of energy efficiency.

• Extension of battery lifetime.

• Compliance to the constraints of energy storage modules, for example, never

over-charge and over-discharge.

For customers, an ESS should not only handle the dynamically changing load de-

mands and the unintentional black-out of the microgrid, but should also reduce the

electricity cost via a smart exchange of power generation from other generating units.

Nevertheless, there is a trade-off between the lifetime of battery and the cost reduction

benefit for customers. A higher usage of the battery module in ESS, the larger is the

reduction in electricity cost for customers increases, but the lifetime of battery module

decreases. The opposite also holds.

2.2.1 Energy Storage System Scheduling

Scheduling for ESS is mainly to control the state-of-charge (SOC) of the battery. In

addition, each energy storage module is characterized by its rate-of-charge, and rate-of-

discharge. For example, a lead-acid battery is generally recommended to operate with

its SOC maintained above 20% so as not to damage the battery. Tran et al. [14] [15]

used Stochastic Dynamic Programming (SDP) to perform energy storage scheduling,

targeting at three objectives including energy efficiency improvement, lifetime exten-

sion and compliance with constraints of battery module. The authors also proposed a

model of battery lifetime, called Peukert Lifetime Energy Throughput (PLET) model

that applies Peukert’s Law for cycle life and depth-of-discharge (DOD) of battery. The

advantage of this model is that it can calculate the loss of life during the scheduling

even with incomplete half cycle or incomplete full cycle. In this model, value of PLET

(cPLET ) is calculated as:

cPLET = dkpn (2.1)

where d is the DOD (%), kp is the Peukert Lifetime constant, and n is the number of

cycles. For any DOD, the total PLET throughout the battery life (C life
PLET ) is almost
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constant. As a result, cumulative PLET (ctPLET ) stands for the battery life loss during

usage at different DOD in the time interval t. Then Loss-of-Life (LoL) of battery is

calculated as:

LoL(%) =
ctPLET

C
life
PLET

× 100% (2.2)

Chen et al. [16] used the model predictive control (MPC) method for scheduling

optimization with the objective for minimizing the energy cost. The MPC method is

employed in scheduling, as shown in Figure 2.4. The time-line is divided into slots for

scheduling, slot has a duration of ∆ minutes. At each time slot t, the MPC process

gets the current electricity price and forecasts power information (amount required and

generated) from slot t+1 to t + (N-1). The MPC process solves the optimization problem

over this N-slot horizon time and applies it to time slot t. At time t+1, the process

updates information for the next N-slot time and solves the optimization problem again

for time slot t+1.

t t + N - 1

Figure 2.4: MPC-based scheduling.

2.2.2 Prediction method

Accurate prediction and modeling of the uncertainties associated with demand load

has always been an important issue in smart grids. Li and Jayaweera [17] proposed two

types of approaches to model customer load demand. The first one is based on a first

order non-stationary Markov chain. The advantage of this advantage is that it can es-

timate how the distribution of load demands evolves over time and the disadvantage is

that there is not enough immediate historical load data. The second method is based on
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the time series analysis technique, that is, time-varying autoregressive (TVAR) process.

The advantage of this method is that it significantly increases the prediction efficiency

with less coefficient estimations, and the disadvantage is that it does not consider the

day of the week, month and seasonal effects. Mathieu et al. [18] proposed a regression-

based electricity load model that uses a time-of-week indicator variable and continuous

temperature dependence. The advantage of this method is that when constructed appro-

priately, it provides a good fit to load data, and the results are easy to interpret, modify

and compute.
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Chapter 3

Preliminaries

In this chapter, we give definitions used in this Thesis including the terminology,

a system model for smart grid, the proposed load prediction method, and the MPC-

based scheduling algorithm for ESS. The terminology includes the main terms used in

this Thesis. A model is proposed for smart grid that supports multiple micro-grids and

use a global bidding mechnism for buying/selling electricity. A regression-based load

prediction method is proposed based on 1) a time-of-week indicator variable, and 2)

piecewise linear and continuous temperature. A model-predictive control (MPC)-based

scheduling method is proposed that uses the predicted demand load, forecasted power

generation, and the dynamic electricity prices along a time horizon of N time slots such

that a scheduling operation for ESS that is optimal for the next time is found. We also

give some assumptions and formulate the target problem in this Chapter. The details

are explained as follows.

3.1 Terminology

The terminologies used in this Thesis are introduced as follows.

1. Energy Storage System (ESS): It is the energy storage equipment in micro-grid.

The operation mode of ESS can be 1) charge mode, 2) no action, 3) discharge

mode.

2. State-of-Charge (SoC): It is the equivalent of fuel gauge for ESS. Take for

example, SoC = 100% when ESS is fully charged. In other words, SoC = 0%

when ESS is fully discharged.
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3. Rate-of-Charge (ROC) and Rate-of-Discharge (ROD): They are denoted in C-

rate unit. Take for example, 0.2C is equal to the 20% capacity of the energy

storage charged/discharged in 1 hour.

4. Demand load (DL): It represents the demand for electricity in the micro-gird.

Different types of consumers for electricity demand vary greatly. Also, these

demands have different variations within one day.

5. Generation power (Gen): It represents the amount of power generated from PV,

wind turbine, fuel cell, or other generators in the micro-gird.

6. Interval: A day can be cut into many intervals. Take for an example, a day can be

cut into 24 intervals, where each interval is of 60 minutes.

7. N-sliding window: At any interval t, forecast data from t+1 to t+N are taken into

consideration.

3.2 System Model

To support multiple micro-grids in global bidding for electricity within the smart

grid, we propose a three-level hierarchical smart grid model based on the Multi-Agent

System (MAS). The smart grid has three levels, namely a smart grid level, a coordinate

control level, and a micro-grid level. As shown in Fig. 3.1, there are two agents at the

smart grid level, including a utility agent and a bidding agent. At the coordinate control

level, there are one or more micro-grid intelligent agents (MIA). As for micro-grid level,

we design a MPC-Scheduler that collects power information from load predictors and

generation agents and then decide a suitable operation mode for ESS according to some

predefined rules. In the following time period, ESS will implement this operation mode

and repeat the above process again.

At the smart grid level, the utility agent not only announces the dynamic electricity

prices for each time interval, but also handles the inadequate or surplus power from all

MIAs in each time interval. The other agent-bidding agent performs the market bid-

ding of power-related commodities for all MIAs. In the bidding process, the electricity

consumers can satisfy their load demands that have surplus electricity by buying elec-

20



tricity. As a result, at a cheaper price from the MIAs, the sellers do not waste the surplus

electricity and gain the profit by transmitting power to other MIAs.

At the coordinate control level, each MIA can transmit/receive power to/from other

MIAs. In other words, all the MIAs have the ability of bidirectional power dispatch.

Moreover, all the MIAs can further transfer/receive power to/from the utility agent if

supply-demand mismatch occurs among all MIAs. MIA should record the bidding

information in each time interval.

At the micro-grid level, the MPC-Scheduler not only schedules the ESS, but also

uploads the local supply-demand mismatch information to MIA for bidding at each

time interval. The load predictor uses the historical load demands from a load agent,

and predicts a new load demand at each time interval and sends the predicted load in-

formation to the MPC-Scheduler. The generation agent does likewise and sends the

predicted generation information to the MPC-Scheduler at each time interval. The ESS

receives the operation mode decided by the MPC-Scheduler, makes necessary changes

(charge/discharge) as required, and records all such operation information for estimat-

ing the lifetime of battery.
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Utility Agent Bidding Agent
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Coordinate Control Level
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Load 

Predictor

Load Agent
Generation 
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ESS
Generation 

Predictor

MIA: micro-grid intelligent agent

Figure 3.1: Three-level hierarchical smart grid model.
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3.3 Assumptions

• Smart Grid Level: It is assumed that all MIA requests arrive at the middle of a

time interval and the bidding agent must deal with each request. When the next

time interval starts, all of the MIAs should transfer/receive power to/from the an-

other one according to the bidding result and the above process is repeated. After

a matching between loads and generation within a micro-grid, an MIA may or

mat not participate in bidding at each time interval. A request for a “zero” or

a “non-zero” amount of power will be made at each time interval by each time

interval by each MIA. An micro-grid with a “zero” amount of power demand will

not take part in bidding . The micro-grid with a request for a no-zero amount of

power will participate in bidding. A request with a positive amount of power im-

plies there is surplus electricity, which can be sold to the micro-grids that require

power in the following time interval, that is, those who with a request for negative

amount of power. During bidding, electricity are met by the surplus electricity.

After bidding, if there is still unused surplus electricity then it is sold to the util-

ity company. If there is deficit of electricity after bidding, then the unsatisfied

requests for electricity demand are met by the utility.

• Coordinate Control Level: Anyone of the MIAs can transfer/receive power to/from

the other MIAs without the power loss rate caused by long distance power trans-

mission in conventional power grids. The energy conversion rate depends on the

equipment capability along the power transmission path.

• Micro-Grid Level: It is assumed that there is no loss of power within a micro-grid

and between micro-grids, irrespective of whether the power transfer/receive is

to/from the other MIA, load agent, generation agent or ESS. Before each bidding

process, the MPC-scheduler should finish all load/generation prediction, ESS

scheduling, and upload its power request to its corresponding MIA for bidding.

3.4 Problem Formulation

Our target problem is defined as follows. Given the status at time interval t of a set of

k micro-grids {MIA1(t), · · · ,MIAk(t)} that comprise a smart grid, where MIAi(t)
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= 〈DLi(t), Geni(t), SPi(t), uPrice(t)〉.

• DLi(t) denotes the demand load of the MIAi(t) at the time interval t,

• Geni(t) denotes the generation power of the MIAi(t) at the time interval t,

• SPi(t) denotes the storage power of the MIAi(t) at the time interval t,

• uPrice(t) denotes the utility electricity price at the time interval t,

the target problem is to schedule and control the operation mode of ESS in all micro-

grids such that the overall cost of electricity trading in the smart grid is minimized.

3.5 Load Prediction Parameters

We use the regression-based load prediction in our Thesis. In this section, we list

the parameters and variables used in regression-based load prediction.

1. ti: It represents the temperature at time interval i.

2. Litvl: It represents the length of a time interval in minutes.

3. Nitvl: It represents the number of time intervals in a day.

4. lDatai and plDatai: It represents the historical demand load data and predicted

demand load data at time interval i.

5. gDatai and pgDatai: It represents the historical power generation data and pre-

dicted power generation data at time interval i.

6. πi: It represents the regression value coefficient for each time-of-week, which is

used in Section 4.1.

7. NB: It represents the number of bounds for the temperature intervals, which is

used in Section 4.1.

8. λj: It represents the j th temperature parameter, where j = 1 . . . NB , which is used

in Section 4.1.

9. Bk: It represents the kth temperature bound, where k = 1 . . . NB , which is used in

Section 4.1.
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10. Tc,j(ti): It represent the j th component temperature of ti, which is used in Section

4.1.

11. Ê(ti): It represents the predicted demand load/generation power for ti.

3.6 Parameter for Model Predictive Control

We use the model-predictive control method in our Thesis. In this section, we list

the parameters and variables used in our MPC optimization algorithm.

1. i: It represents the ith time interval in the MPC.

2. N : It represents the optimization time window length in terms of the number of

time intervals.

3. DLi: It represents the amount of demand load in a micro-grid at time interval i.

4. Geni: It represents the amount of electricity power supply in a micro-grid at time

interval i.

5. uPricei: It represents the electricity price at time interval i

6. Ui: It represents operation mode for ESS at time interval i.

Ui =



















1 if discharge mode;

0 if no action;

−1 if charge mode;

(3.1)

7. CESS: It represents the capacity of ESS in terms of kilowatt hour (kWh).

8. RESS: It represents the ROC or ROD of ESS.

3.7 Parameter for the Bidding

In this section, we list the parameters and variables used in the bidding market.

1. i: It represents the ith time interval in the bidding market.
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2. Requesti: It represents the power request of a MIA at time interval i, Its value is

a positive number if there is surplus power for selling to other MIAs; it is negative

if there is shortage of power that can be satisfied by other MIA.

3. NMIA: It represents the number of MIAs in a smart grid.

4. Nseller,i: It represents the number of sellers at time interval i.

5. Nbuyer,i: It represents the number of buyers at time interval i.

6. PriorityMIAi
: It represents the priority of ith MIA for selling power.

7. Pr: It represents the retail price of electricity from a utility company.

8. Pf : It represents the feed-in price of electricity sold to a utility company.

9. pExchange: It represents the the electricity cost should be paid for all MIAs after

auction.
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Chapter 4

MPC-based Scheduling

We have introduced some basic concepts about our proposed three-level hierarchical

smart grid model in Chapter 3. In Chapter 4, the most important chapter in this Thesis,

we will explain the relationship among the load/generation predictor, MPC-scheduler,

and auction-based marketing. Also, we will introduce the core techniques of each com-

ponent in detail.

4.1 Load/Generation Predictor Design

Figure 4.1 illustrates the flow of estimating the amount of demand load by load

predictor in a micro-grid and Figure 4.2 illustrates the flow of estimating the amount

of power generation by generation predictor in a micro-grid. Load/generation predictor

requires two inputs and produces one output as described in the following.

The first input is the historical weekly demand load/power generation data (lData/gData)

acquired from the load agent/generation agent. This data has 7 rows (days), where each

row comprises 1 micro-grid ID, 1 date information, and Nitvl demand load / power gen-

eration columns which are in kilowatt hour (kWh) unit, such that each column is the

accumulated volume within Litvl minutes.

The second input is the historical weekly temperature data (tData). This data has

7 rows , each row comprises 1 micro-grid ID, 1 date information, and Nitvl outdoor

temperature columns, such that each column is the average temperature within Litvl

minutes.

The output is the predicted demand load (elData) or predicted power generation
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(egData) data of a week. This data has 7 rows (days), each row comprises 1 micro-

grid ID, 1 date information, and Nitvl demand load / power generation columns which

are in kilowatt hour (kWh) unit, each column is the accumulation volume within Litvl

minutes.

The first term Nitvl is the number of intervals and the second term Litvl is the length

of an interval, their relationship can be calculated by Equation (4.1). Consider the

example shown in Table 4.1, if the length of a interval (Litvl) is 15 minutes, then the

number of intervals (Nitvl) is 96.

Nitvl =
60× 24

Litvl

(4.1)

Table 4.1: Example of relationship between Nitvl and Litvl.
Number of intervals (Nitvl) Length of a interval (Litvl)

96 15 minutes

48 30 minutes

24 60 minutes

4.1.1 Linear-regression based prediction method

The load / generation predictor has the dependence between a time-of-week indi-

cator variable and a piecewise linear and continuous outdoor temperature dependence.

Therefore, the predicted demand load / power generation Ê(ti) is calculated by Equa-

tion (4.2).

Ê(ti) = πi +

NB
∑

j=1

λjTc,j(ti) (4.2)

The parameters πi for i = 1 . . . (7×Nitvl), λj for j = 1 . . .NB. To achieve a piece-

wise and continuous out door temperature at time interval i, ti, is broken into NB com-

ponent temperatures Tc,j(ti) with j = 1 . . .NB.

4.1.2 Computing the component temperatures

Before computing the component temperatures, we have to create the temperature

bounds in advance. In Equation (4.3), we divide the temperature into NB equally sized
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Figure 4.1: Load predictor framework.
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Figure 4.2: Generation predictor framework.
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temperature bounds Bk for k = 1 . . .NB. An example is shown in Table 4.2, if the

minimum temperature Tmin is 10 ◦C, the maximum temperature Tmax is 35 ◦C and the

number of temperature bounds NB are 5, the temperature intervals would be [10, 15]

◦C, (15, 20] ◦C, (20, 25] ◦C, (25, 30] ◦C, (30, 35] ◦C.

Bk = Tmin +
Tmax − Tmin

NB

× k (4.3)

Table 4.2: Example for temperature bounds.

B1 B2 B3 B4 B5

[10, 15] ◦C (15, 20] ◦C (20, 25] ◦C (25, 30] ◦C (30, 35] ◦C

Then, we can start to compute the component temperature. In Figure 4.3, the target

temperature T is divided into NB component temperatures Tc,i according to the ascend-

ing temperature bound Bi with i = 1 . . . NB . With the increase of i, Tc,i is calculated by

Equation (4.4) when T is greater than Bi, otherwise, Tc,i is calculated by Equation (4.5)

and turns on the signal variable (sig = 1) which is a variable for recording whether the

target temperature is greater than temperature bound or not. As shown in Table 4.3, the

target temperature T is 24 in the fourth row, for i = 1, T is greater than B1 , then Tc,1 is

equal to B1 (15); for i = 2, T is greater than B2 (20), then Tc,2 is the difference (5) of

B2 and B1; for i = 3, T is less than B3 (25), then Tc,3 is the difference (4) of T and B2,

and sig = 1; for i = 4 and 5, Tc,i is equal to 0, other target temperatures are calculated

in the same way. Algorithm 1 illustrates how to compute the component temperatures

employed by the load / generation predictor.

Tc,i =







Bi if i = 1, T > Bi

Bi −Bi−1 if i > 1, T > Bi;
(4.4)

Tc,i =







T if i = 1, T ≤ Bi;

T −Bi−1 if i > 1, T ≤ Bi;
(4.5)
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Figure 4.3: Flow diagram of computing component temperatures.
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Algorithm 1: Compute the component temperatures

Input:

pData : The historical weekly demand load / power generation data

tData : The historical weekly temperature data

tmpBnd : The array of temperature bound

col : The number of columns of rMatrix

row : The number of rows of rMatrix

Output:

rMatrix : The matrix comprises component temperatures and load/generation

data for linear regression

// Initialization

1 sig ← 0;

2 for j ← 1 to row do

3 for i← 1 to col do

4 rMatrixj,i ← 0;

5 for j ← 1 to row do /* The jth training week */

6 for i← 1 to col − 1 do /* The ith component temperature */

7 if tDataj > tmpBnd[i] and sig = 0 then

8 if i = 1 then

9 rMatrixj,i = tmpBnd[i];

10 else

11 rMatrixj,i = tmpBnd[i] − tmpBnd[i− 1];

12 else if tDataj ≤ tmpBnd[i] and sig = 0 then

13 if i = 1 then

14 rMatrixj,i = tDataj ;

15 else

16 rMatrixj,i = tDataj − tmpBnd[i− 1];

17 sig ← 1;

18 else if sig = 1 then

19 rMatrixj,i ← 0;

20 rMatrixj,col = pDataj ;

21 return rMatrix;
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Table 4.3: Example for computing component temperatures.

i

1 2 3 4 5

T

Tc,i Bi

15 20 25 30 35

11 11 0 0 0 0

20 15 5 0 0 0

24 15 5 4 0 0

27 15 5 5 2 0

31 15 5 5 5 1

35 15 5 5 5 5

4.1.3 Linear-regression based prediction framework

We can simply separate the prediction framework into three parts as shown in Fig-

ure 4.4, including initialization, computing the component temperature, and solving

the linear regression problem. In first part, the load/generation predictor will read the

historical weekly demand load/power generation data and the temperature data from

Ntweek weeks. In the second part, load/generation predictor will get the minimum and

maximum temperature in advance, then we can compute the component temperatures

according to the temperature bounds. In the third part, we solve the linear regression

problem by using the Ordinary Least Squares Principle (OLS). Eventually, we can get

the predicted values of πi and λj at ith time interval for j = 1 . . . NB used in the Equa-

tion (4.2). For the forecast temperature, we compute the component temperature by

Subsection 4.1.2 first, and then get the predicted power Ê(ti). Algorithm 2 illustrates

the linear prediction method employed by load/generation predictor.
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Figure 4.4: Linear-regression based prediction.
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Algorithm 2: Linear regression-based prediction

Input:

hData : The historical weekly demand load/power generation data

tData : The historical weekly temperature data

Ntweek : The number of training weeks

Nitvl : The number of intervals a day

NB : The number of temperature bounds

Output:

pData : The predicted weekly demand load/power generation data

1 for j ← 1 to 7 do /* The jth day of the week */

2 for i← 1 to Nitvl do /* The ith interval of the day */

// Read data

3 hDataj,i = ReadpData(Ntweek, Nitvl);
4 tDataj,i = ReadtData(Ntweek, Nitvl);

// Get minimum and maximum temperature

5 minTempj,i = getMinTemp(tDataj,i , Ntweek);
6 maxTempj,i = getMaxTemp(tDataj,i , Ntweek);

// Start Multiple Linear Regression

7 tmpBndj,i = createBnd(NB , minTempj,i , maxTempj,i , Ntweek);
8 rMatrixj,i =

temp2Bnd(hDataj,i, tDataj,i , tmpBnd, NB + 1 , Ntweek);
/* Algorithm 1 */

9 pDataj,i = multipleRegression(rMatrixj,i);

10 return pData;
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4.2 Model-Predictive Control Scheduler in Micro-grid

Level

Figure 4.5 illustrates the flow of scheduling the operation mode of ESS by the pro-

posed MPC scheduler in a micro-grid. MPC scheduler requires three inputs and pro-

duces one output as described in the following.

The first input is the weekly predicted demand load data (plData) from the load

predictor. The second input is the weekly predicted power generation data (pgData)

from the generation predictor. The third input is the SoC constraints related to ESS such

as the initial SoC (initSoC), the upper bound of SoC (SoCmax), the lower bound of SoC

(SoCmin), the rate-of-charge or rate-of-discharge of ESS (RESS), and the capacity of

ESS (CESS). The output is the operation mode of ESS in the next interval (U1).

4.2.1 Model-predictive control scheduling on ESS

The MPC scheduler controls the operation mode of ESS the next time slot t+1 by

considering the future N slots, called the time horizon. If the time horizon is from slot

t + 1 to t +N , we need to predict the amount of power generation (Geni), the amount

of demand load (DLi), the amount of to be used from ESS or to be stored into ESS,

and the dynamic utility price (uPricei). As shown in Figure 4.6, at each time slot t,

the MPC scheduler solves the optimization problem over the N-slot horizon time. The

optimization problem is to maximize the benefits which would be reduce the electricity

cost or increase the cost for selling electricity as shown by Equation (4.6) under two

constraints. One constraint is ensure that the SoC

of ESS is between the lower bound (SoCmin) and the upper bound (SoCmax) at each

time slot t. The other constraint is to ensure that the operation mode (Ui) of ESS should

be either charge (−1), discharge (1), or no action (0).
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Figure 4.5: MPC-Scheduler framework.
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t t+Nt+i

Figure 4.6: Optimization sliding window in MPC.

max

N
∑

i=1

(Geni −DLi + Ui × CESS ×RESS)× uPricei

subject to SoCmin ≤ Ui + initSoCi ≤ SoCmax

SoCmin ≤ Ui + Ui+1 + initSoCi ≤ SoCmax

... ≤
... ≤

...

SoCmin ≤ Ui + Ui+1 + · · ·+ Ui+N + initSoC ≤ SoCmax

−1 ≤ Ui ≤ 1

−1 ≤ Ui+1 ≤ 1
... ≤

... ≤
...

−1 ≤ Ui+N ≤ 1

(4.6)

4.2.2 Overall MPC scheduling framework

We use the mathematical programming solver–GUROBI-5.6.2 to solve the opti-

mization problem mentioned in Subsection 4.2.1. By applying the integer linear pro-

gramming problem, the GUROBI optimizer then starts to find the optimal solution for

given objective function. We can separate the overall framework into four parts as

shown in Figure 4.7 such as creating the objective function (GRBaddvars()), maxi-

mizing the objective function (GRBsetintattr(MAXIMIZE)), adding constraints of

ESS (GRBaddconstr(SoCmin, SoCmax)), and optimizing the integer linear program-

ming problem (GRBoptimize()). Algorithm 3 illustrates the MPC scheduling method

of ESS employed by MPC scheduler.

39



���	

�	�� �

��������	��� ����������

���	

����� ������� � ����	� �

���������� � �

Figure 4.7: Flow diagram of the overall MPC framework.
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Algorithm 3: Model-predictive control scheduling

Input:

DLj : The predicted demand load data

Genj : The predicted power generation data

uPricej : The dynamic utility prices

initSoCj : The initial SoC of ESS

SoCmin : The lower bound of SoC

SoCmax : The upper bound of SoC

RESS : The rate-of-charge or rate-of-discharge of ESS

CESS : The capacity of ESS

N : The length of model-predictive control window

Output:

Uj : The operation mode of ESS

1 for j ← 1 to N do

// Create objective function

2 objj = (Genj −DLj + Uj ×RESS × CESS)× uPricej;

3 lbj = −1;

4 ubj = 1;

5 GRBaddvars(objj, lbj , ubj , GRB INTEGER);

// Maximization Problem

6 GRBsetintattr(GRB MAXIMIZE);

// Set constraints

7 for j ← 1 to N do

8 for k ← 1 to j do

9 ind[k] = k;

10 val[k] = 1;

11 GRBaddconstr(ind, val, GRB LESS EQUAL, SoCmax − initSoCj);
12 GRBaddconstr(ind, val, GRB GREATER EQUAL, SoCmin −

initSoCj);

// Optimization-Integer Linear Programming

13 return GRBoptimize();
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4.3 Bidding Market at the Smart Grid Level

Figure 4.8 illustrates the flow of auctioning off the surplus power and bidding for

shortage power in the bidding market. The bidding market requires n power request

from all of the MIAs and produces the power switching information (pExchange).
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Figure 4.8: Flow diagram of bidding market.

In Figure 4.8, a Request could be either to buy or to sell power in a micro-grid.

Namely, if the requesti is greater than 0, then MIAi would be a seller in the bidding

market and sell the surplus power to the other MIA with the higher price than utility

feed-in price, otherwise, the MIAi would be a buyer in the bidding market and fulfil

the shortage power from the other MIA with the cheaper price than utility retail price.

The output is the power switching information (pExchange) after the bidding process

is over.
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4.3.1 Two traditional auction mechanisms

We use two auction mechanism in our bidding market. The first-price sealed auction

has two important features. One is that no bidder knows the bid of any other participant,

and the other is that the highest bidder pays the price they submitted.

The second-price sealed auction is similar to the first-price sealed auction, the only

one difference between them is that the highest bidder pays the second high submitted

price. This auction mechanism will reduce more cost than the other one for the buyers

such that buyers then increase the volume of power bidding in the market within the

on-peak time.

4.3.2 Bidding Procedure

These is only one auction good selling at one time in the process of the bidding

procedure. In order to maintain the fairness of all sellers when buyers bid for the good,

we first give the non-repetitive random priority to them and then apply the Round-Robin

(RR) rule to shift their priority.

As shown in Figure 4.9, the top half part is that the bidding market reads all of the

MIA requests (readRequest()) and gives the non-repetitive priority to them (setPriority()

), the bottom half part is flow of the main bidding procedure. In the lower left hand side

of Figure 4.9, the bidding market will sell one good at one time until none of buyers

or seller participating in the bidding, the dealer will decide who is the highest bidder

(getWinner()), then sell the good to the highest priority seller (getF irstPriority()).

After striking a bargain, both the buyer and the seller should adjust their request accord-

ing to the transaction volume of power, and the priority is also shifted according to the

RR rule. In the lower right hand side of Figure 4.9, the bidding procedure is over then

the buyer should fulfil the rest of shortage power from utility company with retail price

(doReatail()) and the seller should sell the rest of surplus power to utility company

with feed-in price(doFeedIn()).
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Figure 4.9: Flow diagram of the overall bidding market framework.

Take for example (See Table 4.4), the buyer E bids for the highest price $60 than the

others for a volume of 10kWh power, the highest priority seller B then sells out 10kWh

to B. Hence, the priority of B is 3. The smaller number represents the higher priority.

Table 4.4: Example for deciding the buyer and the seller before auction.
Buyer A E F Seller B D

Outcry ($) 50 60 45 Priority 3 5

Volume (kWh) 10

Then the bidding market should adjust the request of buyer and seller. As shown in

Table 4.5, we decrease the amount of surplus power of seller B and also decrease the
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amount of shortage power of buyer E relatively according to the auction result.

Table 4.5: Example for adjusting Request after auction.

MIA A B C D E F

Request (kWh) – Before auction -5 10 0 8 -12 -8

Request (kWh) – After auction -5 0 (-10) 0 8 -2 (+10) -8

Finally, the bidding market should shift the priority of seller. As shown in Table 4.6,

we shift the seller B to the lowest priority of all MIAs, that is to say, the priority of

B is changed from the 3th to the 6th and the MIA priority between 4th and 6th are also

decreased by one position.

Table 4.6: Example for shifting the priority of seller after auction.

Priority 1 2 3 4 5 6

MIA – Before auction C E B A D F

MIA – After auction C E A (← 1) D (← 1) F (← 1) B (→ 3)

Algorithm 4 illustrates the first-price sealed mechanism employed by bidding market

and Algorithm 5 illustrates the second-price sealed mechanism employed by bidding

market.
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Algorithm 4: Auction–The first-price sealed auction

Input:

Request : A set of MIA requests

NMIA : The number of MIAs

Pf : The feed-in price of utility company

Pr : The retail price of utility company

Output:

pExchange : A set of power exchange information

// Initialize

1 readRequest(Request, NMIA, Nbuyer, Nseller);
2 setPriority(NMIA);

3 while Nbuyer 6= 0 and Nseller 6= 0 do

// Start Auction

4 getWinner(MIAwin, bP ricefirst);
5 getF irstPriority(MIAfirst);
6 adjustRequest(MIAfirst, MIAwin, bP ricefirst, Nbuyer, Nseller)

shiftPriority(MIAwin)

7 if Nseller 6= 0 then

8 doFeedIn(Pf);

9 if Nbuyer 6= 0 then

10 doRetail(Pr);

11 return pExchange
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Algorithm 5: Auction–The second-price sealed auction

Input:

Request : A set of MIA requests

NMIA : The number of MIAs

Pf : The feed-in price of utility company

Pr : The retail price of utility company

Output:

pExchange : A set of power exchange information

// Initialize

1 readRequest(Request, NMIA, Nbuyer, Nseller);
2 setPriority(NMIA);

3 while Nbuyer 6= 0 andNseller 6= 0 do

// Start Auction

4 getWinner(MIAwin, bP ricesecond);
5 getF irstPriority(MIAfirst);
6 adjustRequest(MIAfirst, MIAwin, bP ricesecond, Nbuyer, Nseller)

shiftPriority(MIAwin)

7 if Nseller 6= 0 then

8 doFeedIn(Pf);

9 if Nbuyer 6= 0 then

10 doRetail(Pr);

11 return pExchange;
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Chapter 5

Experimental Results

This chapter presents the evaluation of load prediction method, ESS scheduling on

cost reduction, trade off between cost reduction and lifetime of ESS, and the MPC-based

scheduling with bidding market.

5.1 Experiment setup

In this section, we explain the environment, extra math library, and demand load

data used in our experiments.

Table 5.1: Environment of experiment
CPU Intel(R) Core(TM) i7-2600 CPU 4 cores @ 3.40GHz

Memory DDR3 1333 8G*2 (16G)

Operating system (OS) Linux Ubuntu 11.10 (64 bits)

Kernel 3.0.0-25-generic

Compiler gcc-4.4.6

5.1.1 Experiment environment

For the experiment environment as shown in Table 5.1, we use a PC with an Intel(R)

Core(TM) i7-2600 CPU. There are four cores in the CPU, and the frequency is 3.4 GHz

for each core. There are 16 GB memory. Furthermore, we use 64-bit Linux Ubuntu

11.10 as our operating system. For the programming, we implemented our proposed

framework using the C programming language.
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5.1.2 Mathematical programming solver

In order to solve the integer linear programming (ILP) problem in our proposed

MPC method, we use the mathematical programming solver – GUROBI-5.6.2 [19].

GUROBI is a free and easy-to-use software, and supports interfaces for a variety of

programming languages such as C, C++, Java, .NET, Python, Matlab, and R. Also,

it includes the following solvers: linear programming solver (LP solver), quadratic

programming solver (QP solver), quadratically constrained programming solver (QCP

solver), mixed-integer linear programming solver (MILP solver), mixed-integer quadratic

programming solver (MIQP solver), and mixed-integer quadratically constrained pro-

gramming solver (MIQCP solver).

5.1.3 Demand load data, generation prediction, specification of ESS,

and dynamic electricity price

We use the ERCOT [20] demand load data including residential area and indus-

trial area as our historical data in our experiments. Characteristics of daily 15-minute

demand load are shown in Table 5.2, where base load represents the minimum power

required by loads in 15-min interval for a day.

Table 5.2: Daily 15-min demand load data of residential and industrial area.
Base load (kWh) Avg. load (kWh) Peak load (kWh)

Residential 22.87 26.23 30.26

Industrial 574.12 683.94 771.2

We use Matlab/Simulink R2013a generator module including PV, wind turbine, and

fuel cell to predict generation power by importing the forecast weather data such as

wind speed and irradiance. Penetration is used for setting up the maximum generation

power for each generator module and is calculated by Equation 5.1. Table 5.3 lists the

penetration for each generator module.

Penetration =
Maximum generation power (kWh)

Average load (kWh)
(5.1)

The specification of ESS set up in our experiments is shown in Table 5.4.
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Table 5.3: Penetration for each generator module.
PV Fuel cell Wind turbine

Penetration 30% 20% 200%

Table 5.4: The specification of ESS.
Initial SoC SoC range RoC/RoD Penetration

50% 20%∼80% 0.1C/hr 20%

The dynamic electricity price of utility company used in our experiments is shown

in Figure 5.1. The highest electricity price is $27.35 at the 15th hour and the lowest

electricity price is $8.10 at the 5th hour.
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Figure 5.1: Dynamic electricity price of utility company in a day.

5.1.4 Comparison with other ESS strategies

We compare to three different strategies using ESS in our experiment including

exhausted, backup [9] [1], and frequency regulation (FR) [21], and explain each strategy

in the following.

The first strategy is that micro-grid uses ESS in exhausted way. As shown in Figure

5.2, the x-axis is the time from 1st hour to 24th hour in a day and the y-axis is SoC of

ESS. The initial SoC is 50% and discharges 10% power in every hour until the lower

bound (20%) of ESS is reached at 4th hour. Then, ESS charges 10% power in every

hour until the upper bound (80%) of ESS is reached at 11th hour and repeats the above
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flow of operating the ESS.
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Figure 5.2: SoC in the exhausted method in a day.

The second strategy is that ESS discharges 10% power when micro-grid is in power

shortage, and ESS charges 10% power when micro-grid has surplus power. Also,

ESS could not discharge/charge when the lower bound (20%) / upper bound (80%)

is reached. As shown in Figure 5.3 and Figure 5.4, the first five hours, the micro-grid

has surplus power and the ESS charges 10% in first three hours and maintains 80% SoC

at the 4th and 5th hours. Then, the micro-grid is in power shortage three hours in a row

and ESS discharges 10% power in every hour. At the 24th hour, the micro-grid is in

power shortage, but the lower bound (20%) is reached and thus ESS maintains 20%

SoC.
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Figure 5.3: The request of a micro-grid in a day.
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Figure 5.4: The SoC of ESS in a day with backup strategy.
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The third strategy is to profile the frequency regulation (FR) in a micro-grid in ad-

vance, namely, ESS will discharge 10% power every hour during the consecutive time

of highest demand load, and charge 10% power every hour during the consecutive time

of lowest demand load.
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Figure 5.5: The demand load of a micro-grid in a day.
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Figure 5.6: The SoC of ESS in a day with FR strategy.

As shown in Figure 5.5 and Figure 5.6, the initial SoC is 50% and the consecutive

time of lowest demand load is from 1st hour to 7th hour, thus ESS will charge in the first

three hours and maintains 80% SoC in the rest three hours. Further, the consecutive

time of highest demand load is from 11st hour to 17th hour, thus ESS will discharge

10% power every hour until the lower bound is reached.
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5.2 Evaluation of linear regression-based load predic-

tion

Table 5.5 shows the parameter settings of load prediction method for the different

number of temperature bounds, training weeks, and areas.

Table 5.5: Parameter settings for linear regression-based load prediction.

Number of temperature bounds 2∼6

Number of training weeks 3∼12

Number of intervals in a day 96

Area Residential, industrial

We use Equation 5.2 to evaluate the accuracy of load prediction method, the lower

Inaccuracy value is calculated, the predicted demand load is more accurate.

Inaccuracy = |Predicted load− historical load| (5.2)

Furthermore, we use Equation 5.3 to choose proper acceptable parameter settings

for load prediction.

InaccuracyRate(IR) =
Inaccuracy

historical load
× 100% (5.3)
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Figure 5.7: Inaccuracy of residential area.

Figure 5.7 shows Inaccuracy of residential area. The Inaccuracy from w3 to w5 is

quite high no matter what temperature bound is used, whereas the Inaccuracy from w6

to w12 is relatively low when the temperature bounds are two or three. As shown in

Table 5.6, the acceptable IR is marked with bold text, and all of marked IR is under 3%.

Figure 5.8 shows Inaccuracy of industrial area. The Inaccuracy from w3 to w7 is
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Table 5.6: IR of residential area.
B2 B3 B4 B5 B6

w3 376.55% 695.99% 601.10% 746.60% 950.53%

w4 1031.91% 827.24% 940.73% 723.09% 1092.23%

w5 3.41% 38.28% 660.17% 1433.29% 2219.81%

w6 1.36% 2.29% 12.91% 788.53% 851.95%

w7 1.43% 1.50% 2.46% 23.25% 957.73%

w8 1.78% 1.84% 5.79% 277.87% 750.82%

w9 1.69% 1.62% 7.85% 21.06% 101.48%

w10 1.37% 1.51% 15.50% 16.58% 278.73%

w11 1.43% 1.59% 1.57% 389.83% 511.60%

w12 2.89% 2.98% 4.07% 24.41% 389.84%

quite high no matter what temperature bound is used, whereas the Inaccuracy from w8

to w12 is relatively low when the temperature bounds are two or three. As shown in

Table 5.7, the acceptable IR is marked with bold text, and all of marked IR is under 5%.

Table 5.7: IR of industrial area.
B2 B3 B4 B5 B6

w3 5.92% 316.53% 766.07% 2072.81% 1619.39%

w4 5.15% 247.38% 828.60% 555.58% 1938.41%

w5 24.64% 201.81% 361.55% 1025.42% 2091.90%

w6 9.81% 9.96% 531.53% 1838.41% 1859.43%

w7 9.50% 5.43% 235.03% 1624.66% 1915.75%

w8 1.85% 2.61% 5.38% 1265.52% 1727.10%

w9 2.20% 4.00% 33.27% 967.33% 1571.28%

w10 2.09% 4.20% 6.10% 795.63% 1371.84%

w11 1.74% 2.91% 6.01% 673.60% 1430.71%

w12 0.81% 1.05% 6.60% 18.67% 569.56%

56



��

��

��

��

��

��

��

�	


�		

�	�


 �
 	

 	�
 �

 ��
 �

 ��
 �

 ��
 �



��

��

��

��

��

�����������	
���������������	�������

�
�
�
�
�
��
	

�
��
�
��
��
�
��
�
�
��

Figure 5.8: Inaccuracy of industrial area.
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5.3 ESS Scheduling Experiment

Table 5.8: Parameter settings for MPC-based scheduling of ESS.

Number of intervals in a day I24, I48, and I96

Length of MPC optimization windows 2∼10 hours

Area Residential

Dynamic electricity price ($) $8.10∼$27.35

In this section, we use Equation 5.4 to evaluate how the proposed MPC-based

scheduling improves the electricity bills with different optimization window, where

Mbill represents the electricity bill under MPC-based scheduling and woESSbill rep-

resents electricity bill without the use of ESS. Table 5.8 lists the parameter settings for

MPC-based scheduling of ESS including number of intervals in a day and length of

MPC optimization windows.

Cost Reduction (CR) =
|Mbill − woESSbill|

woESSbill
× 100% (5.4)
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Figure 5.9: Cost reduction for different optimization time horizon.

As shown in Figure 5.9, cost reduction (CR) is increased with increase in the MPC

optimization time horizon, O10 is 2.4 times greater than O2 with I24, O10 is 2.03 times

greater than O2 with I48, O10 is 1.88 times greater than O2 with I96. But CR is totally
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different for I24, I48, and I96 even with the same MPC optimization time horizon, for

instance, when the time interval is made smaller, namely from 60 minutes (I24) to 15

minutes (I96), the more cost reduction increases. Take for an example, I24 is 1.04 times

less than I48 and is 1.17 times less than I96 when MPC optimization time horizon is

3 hours. The numbers of time intervals that needs to be taken into consideration for

MPC-based scheduling are as shown in Table 5.9. From Figure 5.9, we can conclude

that the more the number of intervals considered, the more is the cost reduction.

Table 5.9: Number of intervals required for MPC-based scheduling with different opti-

mization time horizons.
I24 I48 I96

2 hours 2 4 8

3 hours 3 6 12

4 hours 4 8 16

5 hours 5 10 20

6 hours 6 12 24

7 hours 7 14 28

8 hours 8 16 32

9 hours 9 18 36

10 hours 10 20 40

But there are some irregular sign on cost reduction when MPC optimization time

horizon increases, that is, the more the number of intervals considered, the less is the

cost reduction. Take for an example, as shown in Figure 5.10 and Figure 5.11, due to

the different charge operation during 19th to 21th hour results that the cost reduction of

I24 is better than I48, as shown in 5.10 and Figure 5.12, due to the different charge

operation during 8th to 12th hour results that the cost reduction of I24 is better than I96.
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Figure 5.10: 24 intervals with 10 hours MPC optimization time horizon.
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Figure 5.11: 48 intervals with 10 hours MPC optimization time horizon.
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Figure 5.12: 96 intervals with 10 hours MPC optimization time horizon.
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Figure 5.13: Scheduling time for different MPC optimization time horizons.

Furthermore, as shown in Figure 5.13, the scheduling time increases with increase

in the MPC optimization time horizon, for instance, I24 is 4.83 times faster than I48

and is 15.5 times faster than I96 in average for all optimization time.

In summary, we suggest that a suitable MPC optimization time horizons is 10 hours

and the number of intervals of a day is 24, in such case, the CR is highest and the

execution time is relatively faster.

5.4 Trade-off between Cost Reduction and Lifetime of

ESS

Table 5.10: Parameter settings for trade-off experiment.

Runtime One week

Area Residential

Dynamic electricity price ($) $8.10∼$27.35

In this section, we will explain the trade off between the cost reduction on electricity

bill and the lifetime of ESS. Table 5.10 lists the parameter settings in this experiment.

For estimating the lifetime of ESS, we use the Perkert lifetime energy throughput

[1] (PLET) model to calculate the lifetime for different ESS management strategies

including exhausted, FR, backup, and MPC as shown in Table 5.11.
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Table 5.11: Charge/Discharge time for all ESS stratgies.
Strategy Charge Discharge

Exhausted During 4∼10 hour, 16∼22 hour During 10∼16 hour, 22∼4 hour

FR During 11∼17 hour During 1∼7 hour

Backup Surplus power Power shortage

MPC Off-peak time, surplus power Peak time, Power shortage

cumPLET = dκPn (5.5)

In Equation 5.5, cumPLET represents the cumulative PLET battery loss, where d is

depth-of-discharge (DOD), κP is the Peukert Lifetime constant (typically in the range

1.1 to 1.3), and n is the number of charge/discharge cycles.

Loss of Life (LoL) =
cumt

PLET

C
life
PLET

× 100% (5.6)

In Equation 5.6, LoL represents the loss-of-life during the usage at different DOD,

where cumt
PLET represents the cumulative PLET battery loss at different time t, and

C
life
PLET represents the PLET total lifetime. The κP is set as 1.1 and the C

life
PLET is set as

100,000 in our experiment. We use Li-ion battery and its C life
PLET is 102,760 [14].
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Figure 5.14: Cost reduction on electricity bill with different ESS management strate-

gies.

As shown in Figure 5.14 and Figure 5.15, the MPC-based scheduling gives the high-

est cost reduction among all strategies, but the corresponding LoL is also the highest
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one due to the strategy of MPC much as possible to alleviate the intermittency of renew-

able energy resources. MPC-based scheduling indeed can save cost on electricity bill,

but a lot more power from ESS discharged during on-peak time or during the time pe-

riods of power shortage, thus the loss-of-life is significant. The FR strategy discharges

ESS power only at on-peak time, and charges power at off-peak time. FR can indeed

not only save more cost on electricity bill than the backup and exhausted strategies, but

can also reduce the loss-of-life, which is the lowest among all strategies. The backup

strategy only discharges power when the micro-grid is in power shortage, and charges

power when the micro-grid has surplus power, the cost of electricity bill can not be

reduced significantly in a such strategy because ESS is not charged at lower electricity

prices and is not discharged power at higher electricity prices. The exhausted strat-

egy uses ESS frequently, namely discharges power upto the preset lower bound and

charges power upto the preset upper bound twice a day. As a result, the LoL of ESS in

the exhausted method is quite high than the FR and the backup strategies but the cost

reduction is not increased which is smaller than MPC and FR strategy.
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Figure 5.15: LoL of different ESS strategies.

5.5 MPC-based scheduling with bidding market

In this section, we apply the MPC-based scheduling of ESS for four MIAs with two

auction mechanism including the first-price [22] [23] and the second-price [24] [25]

sealed auction. The goal is cost saving on electricity bill. Table 5.12 lists the parameter

settings used in our experiments.

63



Table 5.12: Parameter settings of bidding market.

Number of MIAs 4

Runtime One week

Area Residential

Dynamic electricity price ($) $8.10∼$27.35

The cost saving is calculated by Equation 5.7, where aucbill represents the electric-

ity bill with auction mechanism and woBIDbill represents electricity bill without the

bidding market.

Cost saving (CS) =
|aucbill − woBIDbill|

woBIDbill
× 100% (5.7)
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Figure 5.16: Cost saving with MPC-based scheduling of ESS with the first-price and

the second-price sealed auctions.

As shown in Figure 5.16, the cost saving (CS) is 35.25% in average with the first-

price sealed auction and is 34.86% in average with the second-price sealed auction for

all MIAs. The bidding market indeed brings more benefit on electricity bill. Table 5.13

lists the electricity bill of all MIAs with different auction mechanism.

On one hand, for the MIA with the amount of the generated power is greater than

consumed power, the first-price sealed auction is suitable. On the other side, the second-

price sealed auction is suitable for the MIA with the amount of demand power greater

than the generated power. Take for an example, MIA 2 is the former one that gains more
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Table 5.13: The electricity bill of different auction mechanism for all MIAs.
MIA 1 MIA 2 MIA 3 MIA 4

w/o bidding ($) 30240.6 31335.2 29208.7 32564.6

First-price ($) 25734.3 17995.1 11103.6 25555.6

Second-price ($) 23418.5 20986.6 15950.8 20032.8

Table 5.14: Amount of surplus power and shortage power for all MIAs.
MIA 1 MIA 2 MIA 3 MIA 4

+: Surplus power (kWh) 280.7 1768.7 3035.6 320.1

-: Shortage power (kWh) 1912.9 597.0 1030.4 1864.8

benefits on bill for higher electricity price when selling surplus power and MIA 1 is the

latter one that pays for the bill for cheaper electricity price when fulfilling the shortage

power. Table 5.14 lists the amount of surplus power and shortage power for all MIAs.
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Chapter 6

Conclusions and Future Work

In this Thesis, we have proposed a system model for smart grid architecture in-

cluding micro-grid level, coordinate control level, and smart grid level and an Model-

Predictive Control (MPC) based scheduling method for energy storage systems (ESS) in

a micro-grid. The proposed MPC-based scheduling method can achieve an average of

3.40% cost reduction for electricity bill but the loss-of-life for ESS is 2.14% in one week

which is higher than other ESS strategy including exhausted, backup, frequency regu-

lation (FR). Further, with the participation in bidding market for all MIAs can achieve

35.25% cost saving in average with the first-price sealed auction and 34.86% cost saving

in average with the second-price sealed auction.

The accuracy of load prediction method is bad when the number of temperature

bounds are greater than 3, we will divide the temperature unequally according to the

amount of power required by loads on different temperature bound, and thus improves

the accuracy in the future. The MPC-based scheduling for ESS has a side-effect on loss-

of-life, the ESS can not operate for a long time, and thus the cost for updating the ESS

equipments increases as well. In the future, our work will try to take the loss-of-life of

ESS into consideration, instead of reducing only the electricity bill. As a result, we will

find the balance of saving the cost on electricity bill and extending the battery life for

micro-grid. In the bidding market, we will use the different amount of power and fixed

price rather the fixed amount of power and different price for auction mechanism, and

saves more electricity cost.
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